5d^2+20=145

Simple and best practice solution for 5d^2+20=145 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5d^2+20=145 equation:



5d^2+20=145
We move all terms to the left:
5d^2+20-(145)=0
We add all the numbers together, and all the variables
5d^2-125=0
a = 5; b = 0; c = -125;
Δ = b2-4ac
Δ = 02-4·5·(-125)
Δ = 2500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{2500}=50$
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-50}{2*5}=\frac{-50}{10} =-5 $
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+50}{2*5}=\frac{50}{10} =5 $

See similar equations:

| x•3x=96 | | (3x+24)+(2x)+84=180 | | -210+3x=-10x+102 | | 3x+24+2x+10+84=180 | | 19x-5=7+15 | | (3x+24)+(2x+84=180 | | -210+3x=-10x+120 | | 5×6x-6=11+5x | | (3x+24)+(2x+10)+84=180 | | 2r+4-7r=-2-4r | | (3x+24)+(2x+13)+84=180 | | 3=-7.2(2+2e) | | 13x-93=89+6x | | 15-5(4x-5)=50 | | 2t2+5t-12=0 | | 5x+21=7 | | 9x+1+3x=180 | | 6+5w=-26+5w | | -58+8x=5x+53 | | 12+6x=3x+6 | | 12-4x=-3x+8 | | 2x(x+4)-5=2x+3 | | 90-4p=8*6-6 | | x²+4=13 | | 3m+3=m-3+3m | | 2(4+3x)=6-(6x+1) | | -218+5x=14x+106 | | 4w+14=16 | | -110+15x=4x+88 | | 90-4p=8p-6 | | 4+2x=x+1-3 | | 3(y-4)=-9y+12 |

Equations solver categories